دانشگاه آزاد اسلامی
واحد شاهرود
گروه آموزشی مهندسی شیمی
پایان نامه براي دریافت درجه کارشناسی ارشد « M. Sc »
گرایش: صنایع غذایی
عنوان:
بررسی خواص اساسی بایو نانو کامپوزیت نشاسته تاپیوکا / نانو دی اکسید تیتانیوم و اثر آن بر پارامترهای رشد میکروبی اشریشیا کلی
استاد راهنما:
دکتر عبدالرضا محمدی نافچی
نگارش:
شیرین ورهرام
تابستان 1393
Islamic Azad University
Shahrood Branch
Faculty of Engineering, Department of Chemical Engineering
Subject:
The basic properties of tapioca starch bayvnenvkampvzyt / nano titanium dioxide and its effect on microbial growth parameters of E.coli
Main Supervisor:
Abdorreza Mohamadi Nafchi, PhD
By:
Shirin Varahram
October 2014
سپاسگزاری
سپاسگزار کسانی هستم که سرآغاز تولد من هستند. از یکی زاده میشوم و از دیگری جاودانه.
استادی که سپیدی را بر تخته سیاه زندگیم نگاشت و پدر و مادری که تار مویی از آنها بپای من سیاه نماند.
بی شک من در این دفتر به قدر پیمانه خویش برداشته ام و به قدر دیده خویش دیده ام و قسمت یک روزه ای را در این کوزه کرده ام و ماحصل کار مسلماً همانند محصولات بشری دیگر خالی از خلل نخواهد بود. لکن اگر در خطی خطایی هست و در نقطه ای، نکته ای مغفول مانده مسبب و مسئول آن تنها راقم است و اگر حسنی و برکتی در آن نهفته محصول و معلول راهنمایی بزرگان بحر نوش طوفان آشامیست که در طی سالها از هیچ کمکی دریغ نکرده اند…
فهرست مطالب
سپاسگزاری‌د
فهرست مطالب‌ه
فهرست اشکال‌ط
فهرست جداول‌ك
چکیده1
فصل اول2
1-1- مقدمه3
1-2- پیش زمینه5
1-3- بیان مسئله6
1-4- اهمیت موضوع8
1-5- اهداف تحقیق11
1-5-1- هدف اصلی11
1-5-2- اهداف اختصاصی11
1-6- پرسشهای تحقیق12
1-7- محدودیتهای تحقیق12
1-8- نمودار تحقیق12
فصل دوم14
2-1- معرفی نشاسته و نشاسته تاپیوکا14
2-1-1- ترکیب و ساختار نشاسته14
2-1-2- نشاسته تاپیوکا17
2-1-2-1- مرفولوژی گیاه کاساوا18
2-1-2-2- فرآوری و تبدیل کاساوا20
2-2- نانو تکنولوژی21
2-3- بایو نانو تکنولوژی22
2-4- کامپوزیت23
کامپوزیت‌های سبز(کامپوزیت‌های زیست‌تجزیه‌پذیر)23
2-5- تعریف نانو کامپوزیت24
2-6- تعریف بایو نانو کامپوزیت24
2-7- فلز تیتانیوم25
2-7-1- نانو دی اکسید تیتانیوم26
2-8- فیلم های خوراکی26
2-9- پوشش ها و فيلم هاي خوراكي27
2-10- بسته بندی فعال29
2-11- بسته بندی نانو30
2-12- بسته بندي ضد ميكروبي31
2-12-1- انواع بسته بندي هاي ضد ميكروبي32
2-12-2- مزاياي استفاده از بسته بندي هاي ضد ميكروبي32
2-12-3- معايب استفاده از بسته بندي هاي ضد ميكروبي33
2-13- پلاستی سایزرها33
2-14- روشهای تولید فیلم34
2-15- ارزیابی خواص فیلم های خوراکی35
2-15-1- خواص ممانعتی35
2-15-2- خواص مکانیکی37
2-16- خواص ضد میکروبی39
فصل سوم44
3-1- مواد46
3-2- روش تهیه فیلمهای نانو بایوکامپوزیتی47
3-3 – ضخامت فیلم48
3-4- آنالیز فیلم48
3-4-1- ویژگی های مکانیکی49
3-4-2- رنگ سنجی50
3-4-3- نفوذ پذیری بخار آب (WVP)51
3-4-4- حلالیت فیلم ها52
3-4-5- ظرفیت جذب آب (WAC)52
3-4-6- نفوذ پذیری به اکسیژن53
3-4-7- خاصیت ضد میکروبی53
3-5- تجزیه و تحلیل آماری54
فصل چهارم55
4-1- ارزیابی کیفی فیلم زیست تخریب پذیر خوراکی56
4-1- 1- بررسی اثر نانو دی اکسید تیتانیوم بر خواص ظاهری فیلمهای نشاسته تاپیوکا56
4-1-2- بررسی اثر نانو دی اکسید تیتانیوم بر ضخامت فیلمهای نشاسته تاپیوکا56
4-2- بررسی اثر نانو دی اکسید تیتانیوم بر خواص مکانیکی فیلمهای نشاسته تاپیوکا57
4-3- بررسی اثر نانو دی اکسید تیتانیوم بر خواص فیزیکوشیمیایی فیلمهای تاپیوکا60
4-3-1- قابلیت میزان جذب آب60
4-3-2- حلالیت در آب61
4-4- بررسی اثر نانو دی اکسید تیتانیوم بر خواص ممانعتی فیلمهای تاپیوکا63
4-3-1- تعیین میزان نفوذ پذیری به بخار آب63
4-4-2- نفوذ پذیری نسبت به بخار اکسیژن64
4-5- مشخصه های رنگی66
4-6- بررسی اثر نانو ذرات بر خواص ضد میکروبی فیلمهای نشاسته تاپیوکا67
فصل پنجم70
5-1- نتیجه گیری71
5-2- پیشنهادات71
منابع و مراجع73
English abstract81
فهرست اشکال
شکل 1- 1: نمودار فرآیند تحقیق13
شکل 2- 1: ساختمان شيميايي نشاسته16
شکل 2- 2: ریشه کاساوا18
شکل 4- 1: رنگ فیلمهای نشاسته تاپیوکا با غلظت های متفاوت ( %0 و 5%) نانو دی اکسید تیتانیوم.56
شکل 4- 2: نمودار مقاومت به کشش فیلمهای نشاسته تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم.59
شکل 4- 3: نمودار درصد کشیدگی فیلمهای نشاسته تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم.59
شکل 4- 4: نمودار مدول یانگ فیلمهای نشاسته تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم.60
شکل 4- 5: میزان جذب آب فیلمهای نشاسته تاپیوکا، با غلظتهای مختلف نانو دی اکسید تیتانیوم.61
شکل 4- 6: میزان حلالیت در آب فیلمهای نشاسته تاپیوکا، با غلظتهای مختلف نانو دی اکسید تیتانیوم.63
شکل 4- 7: میزان نفوذ پذیری به بخار آب فیلمهای تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم64
شکل 4- 8: میزان نفوذ پذیری به اکسیژن فیلمهای تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم66
شکل 4- 9: سنتیک رشد میکروبی در فیلم نشاسته تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم.69
شکل 4- 10: اثر نانو دی اکسید تیتانیوم بر سنتیک رشد میکروبی (اشریشیا کلی ) فیلمهای نشاسته تاپیوکا.69
فهرست جداول
جدول 2- 1: گیاه شناسی گیاه کاساوا18
جدول 2- 2: آنالیز ریشه کاساوا و سیب زمینی ] 68[.19
جدول 4- 1: میانگین ضخامت فیلمهای شاهد نشاسته تاپیوکا و نمونههای حاوی نانو دی اکسید تیتانیوم.57
جدول 4- 2: پارامترهای رنگ سنجی از فیلم نشاسته تاپیوکا با غلظتهای مختلف نانو دی اکسید تیتانیوم.66
چکیده
برخی از بزرگ ترین پیشرفتهای حاصل شده در صنعت بسته بندی مواد غذایی مرتبط با فناوری نانو است. در این کار پژوهشی تولید و ارزیابی ویژگیهای فیلمهای خوراکی بر پایه نشاسته تاپیوکا حاوی نانو ذرات دی اکسید تیتانیوم مورد ارزیابی قرار گرفت. در این پژوهش فیلمهای نشاسته تاپیوکا به همراه نانو ذرات دی اکسید تیتانیوم در غلظتهای 0، 1، 3، و 5 % با استفاده از روش کاستینگ (Solvent Casting) تهیه شد. کلیه خواص فیزیکوشیمیایی، مکانیکی و عبوردهی نسبت به بخار آب و اکسیژن به روش استاندارد ملی امریکا انجام شد. آزمون مکانیکی نانو بایوکامپوزیت فیلمهای نشاسته تاپیوکا / نانو دی اکسید تیتانیوم، افزایش استحکام کششی و مدول یانگ، کاهش درصد کشیدگی را به دلیل افزایش غلظت نانو ذرات نشان دادند. خواص فیزیکوشیمیایی ( میزان جذب آب و حلالیت ) و خواص ممانعتی ( نفوذ پذیری نسبت به بخار آب و اکسیژن )، با افزایش میزان نانو ذرات دی اکسید تیتانیوم کاهش معنی داری ( 05/0 > P)، را نشان دادند. فیلمهای خوراکی نشاسته تاپیوکا ساپورت شده باTio2 خواص ضد میکروبی خوبی را در مقابل باکتری اشریشا کلی، از خود نشان دادند. که این موضوع بیانگر خاصیت ضد میکروبی نانو ذرات دی اکسید تیتانیوم است. به طور کلی با توجه به بررسیهای انجام شده نانو دی اکسید تیتانیوم توانایی بهبود خواص اساسی فیلمهای نشاسته تاپیوکا را دارا میباشند و میتوانند به عنوان فیلم خوراکی و بسته بندی فعال در صنایع غذایی مورد استفاده قرار گیرند.
واژگان کلیدی : فیلم خوراکی تاپیوکا، نانو دی اکسید تیتانیوم، خواص مکانیکی، خواص ممانعتی، خواص فیزیکوشیمیایی، خواص ضد میکروبی.
فصل اول
کلیات
1-1- مقدمه
بسته یا پوشش غذا نقش منحصر به فردی در سلامت غذا و در نتیجه مصرف کننده ایفا میکند. مسلم است که بیشتر فرآورده های غذایی با نوعی روش بسته بندی به مصرف کننده میرسد و در نتیجه بسته بندی بخش مهمی در زنجیره غذایی میباشد ]52[. اما مواد بسته بندی قدیمی که از مواد نفتی مشتق شده بودند هیچ یک زیست تخریب پذیر نبوده و از لحاظ زیست محیطی قابل تحمل نیستند و خطرات سلامتی را تحمیل می کنند برای مثال مهاجرت افزودنی های مضر به غذا. زیست تخریب پذیری مواد پلاستیکی سنتزی حاصل از مشتقات نفتی بسیار کند بوده و تجزیه کامل آنها چندین سال به طول می انجامد و این امر باعث افزایش آلودگی های زیست محیطی می گردد. لذا طی سال های اخیر یافتن جایگزینی مناسب برای پلاستیک های سنتزی بطوری که زیست تخریب پذیری بالایی داشته و آلودگی زیست محیطی کمتری بر جای بگذارد توجه محققین را به خود را جلب کرده است. بیوپلیمرهای خوراکی بازیست تخریب پذیری بالا که از منابع قابل تجدید کشاورزی حاصل می شوند گزینه ای مناسب در این زمینه به شمار می روند. با وجود مزایای مسلم زیست محیطی و پایداری پلیمرهای زیستی این قیمت رو به رشد نفت خام و گاز طبیعی است که عامل محرکه برای سرمایه گذاری اقتصادی در این زمینه است. این موضوع و دو عامل محرکه تلاش برای بازیافت بیشتر ضایعات و همچنین ثبات محیط زیست و مدیریت کشاورزی این ضرورت را ایجاد می کند که تغییری به سمت پلاستیک های زیستی صورت گیرد ]6[.
اخیراً به دلیل نگرانی‌های زیست محیطی در ارتباط با پسماند بسته‌بندی‌های پلاستیکی مصنوعی، تلاش‌های بسیاری برای تهیه مواد بسته‌بندی زیست تجزیه‌پذیر از پلیمرهای طبیعی است ] 74[.
نوع بسته‌بندی عامل مهمی جهت افزایش زمان نگهداری و حفاظت از غذاهای فاسدشدنی است، به ویژه در مورادی که تخریب اکسایشی و میکروبیولوژیکی در آنها رخ می‌دهد. پیشتر اکثر مواد بسته‌بندی ریشه مصنوعی داشتند، اما امروزه به دلایل زیست محیطی، تلاش‌های روزافزونی جهت یافتن مواد خوراکی زیست‌تجزیه‌پذیر صورت می‌گیرد، که این مواد نیز درصورت امکان حاصل بازیابی صنایع و منابع تجدیدپذیر هستند. حساسیت مشابهی را می‌توان در تحقیقات علمی اخیر مشاهده نمود که تمرکزشان بر فیلم‌های زیست‌تجزیه‌پذیر و یا خوراکی، و مراجع و مآخذ بسیاری در ارتباط ژلاتین خالص یا مخلوط شده با سایر مواد بیو پلیمری دارند ]75[.
امروزه بخش بزرگی از مواد استفاده شده در صنعت بسته بندی از فرآوردهای نفتی و پتروشیمی به دست میآیند که غیر قابل تجزیه در طبیعت بوده و مشکل زیست محیطی ایجاد میکنند. از این رو محققین همواره به دنبال راه حلهایی برای این موضوع میباشند. رشد روز افزون محصولات زیستی و توسعه تکنولوژیهای نوین سبب کاهش وابستگی به استفاده از سوختهای فسیلی گردیده است. در چند دهه اخیر میزان توجه و علاقه افراد به استفاده از بیوپلیمرها به دلیل افزایش بیشتر آگاهی مصرف کنندگان، افزایش قیمت نفت خام، افزایش آلودگیهای زیست محیطی و تجزیه ناپذیر بودن پلیمرهای نفتی و توجه به گرمای جهانی افزایش یافته است و سبب شده تلاشهای فراوانی در جهت تولید مواد بستهبندی با منشا طبیعی(پروتئین،چربی و کربوهیدرات) به صورت فیلم یا پوشش صورت گیرد. اینگونه بیوپلیمرها در مقایسه با استفاده از پلاستیکها اثرات مخرب کمتری بر محیط زیست دارند ]80[.
لایه خوراکی، لایه نازکی از ماده زیستی است که صنایع بسته بندی را به خود جلب کرده است، چون مانع از رطوبت، اکسیژن و حرکت محلول مواد غذایی می شود.از میان لایه های خوراکی بر مبنای پروتئین، لایه ژلاتین به خاطر فرآورده های خوراکی و دارویی مانند اجزای روکش کپسول، گوشت و سوسیس مورد توجه قرار گرفته است ]58[.
سالیان طولانی است که از پوششهای خوراکی جهت نگهداری بهتر محصولات غذایی و افزایش جذابیت ظاهری آنها استفاده میشود، به عنوان مثال از دوران باستان چینیها پرتقال و لیموهای تازه را با لایهی نازکی از موم میپوشاندند تا خشک شدن آنها به تعویق بیافتد. استفاده از فیلمهای خوراکی در بستهبندی موادغذایی اولین بار در سال 1895 توسط ماریس و پارکر انجام گرفت. آنها از فیلمهای ژلاتینی برای نگهداری گوشت استفاده کردند. از سال 1930 استفاده از مومهای پارافینه مذاب برای پوشش دادن مرکبات تجاری شد و در اواخر دهه 1950 امولسیونهای روغن در آب جهت پوششدادن میوهها و سبزیها بکار رفت ]50[.
1-2- پیش زمینه
بسته بندی های زیست تخریب پذیر که قابلیت خوراکی بودن و مصرف به همراه ماده غذایی را دارند شامل فیلم ها و پوششهای خوراکی میباشند. فیلم های خوراکی لایه هایی از مواد قابل هضم هستند که به عنوان پوشش مواد غذایی(پوشش های خوراکی) و یا به عنوان مانعی بین غذا و سایر مواد و یا محیط ها استفاده میشوند. پوششهای خوراکی قابل تجزیه به وسیله میکروارگانیسم ها مصرف شده و به ترکیبات ساده تبدیل میشوند. پلی ساکارید هایی مانند کیتوزان، نشاسته و سلولز، پروتئین هایی مانند زئین و کلاژن و چربی هایی مانند تری گلیسیریدها و اسیدهای چرب میتوانند به عنوان فلیم های خوراکی استفاده شوند. فیلمهای پلی ساکاریدی قیمت پایینی دارند اما مانع مناسبی در برابر نفوذ رطوبت نیستند. فیلمهای پروتئینی دارای قابلیت های مفیدی مثل شکل پذیری در فرآیند، خاصیت ارتجاعی و ممانعت خوب در برابر نفوذ اکسیژن هستند (نظیر پلی ساکاریدها) اما عبورناپذیری آنها در برابر نفوذ آب ضعیف است مانند پلی ساکاریدها. فیلمهای چربی خواص نفوذ ناپذیری خوبی در برابر رطوبت دارند اما مقاومت آنها در برابر عبور اکسیژن و خصوصیات مکانیکی شان ضعیف است. اکسیژن بالا در بسته بندی غذا به رشد میکروب، حذف طعم و بوی ایجاد شده، تغییر رنگ و از بین رفتن غذا کمک میکند و علت عمده کاهش زمان نگهداری غذاها به شمار می رود. بنابراین کنترل سطح اکسیژن در بسته بندی غذا امری مهم تلقی میشود. بخار آب تشکیل شده در داخل بسته بندی باعث رشد میکرواگانیسمها و در نتیجه از بین رفتن کیفیت غذا و کاهش زمان ماندگاری میگردد. یکی از راه های رفع این نقایص در فیلمهای پلیمری زیستی ایجاد ترکیب هایی از آنها با نانو ذرات است که موجب تحقیق و توسعه نانو کامپوزیت های زیستی شده است. استفاده از نانو تکنولوژی دراین پلیمرها ممکن است امکانات جدیدی را برای بهبود نه تنها ویژگیها بلکه به طور همزمان بهبود ارزش، قیمت و راندمان را سبب شود. اندازه نانو ذرات موجب پراکندگی و توزیع خوب آنها میشود. این نانو کامپوزیت ها میتوانند به طور قابل توجهی ویژگیهای مکانیکی، حرارتی، ممانعتی و فیزیکوشیمیایی بهبود یافته ای در مقایسه با پلیمرهای اولیه و کامپوزیت های میکرو سایز مرسوم نشان دهند ]18[. رشد میکروب ها روی سطح مواد غذایی دلیل اصلی فساد مواد غذایی و بیماریزایی در مصرف کننده می باشد. به این دلیل تلاش های زیادی برای تیمار این سطوح به روش های گوناگون مانند اسپری یا غوطه ور کردن در مواد نگهدارنده مختلف صورت گرفته است. فیلمهای خوراکی به تنهایی و یا همراه با مواد ضد میکروبی، موجب مهار رشد باکتریها در سطح مواد غذایی و در نتیجه فساد آنها میشوند. فناوری نانو میتواند در مواردی مانند افزایش مقاومت به نفوذ در پوشش ها، افز ایش ویژگی های ممانعتی، افزایش مقاومت در برابر گرما، گسترش ضد میکروب های فعال و سطوح ضد قارچ کارساز باشد ]18[.
1-3- بیان مسئله
در قرن نوزدهم ایدههای مربوط به صنعت بستهبندی مواد غذایی و محافظت از مواد غذایی ابداع گردید. ایدههایی که حتی تا به امروز در این صنعت مطرح هستند. اما اختراعاتی مثل ساخت بطریهای شیشهای، پوشش سلفون، فویل آلومینیومی و ظروف پلاستیکی که در قرن بیستم روی داد به شکل چشمگیری، انعطافپذیری صنعت مواد غذایی را بالاتر برد و آن را کاربردیتر کرد. پیشرفتهای دیگری نظیر استفاده از مواد ضد میکروبی یا جاذب اکسیژن در ساخت ظروف مواد غذایی موجب شکلگیری رویه جدیدی در افزایش ماندگاری مواد غذایی و حفاظت آنها در برابر تأثیرات محیطی شد. با این حال روند فعلی عرضه محصولات غذایی در سطح جهان مثل افزایش فرآوری صنعتی غذاها، حجم بالای صادرات و واردات محصولات غذایی و کوتاهتر شدن زمان تهیه مواد غذایی تازه، صنعت بستهبندی محصولات غذایی را وادار میکند به دنبال راه کارهای جدیدتر و پیشرفتهتر بستهبندی باشد. زمانی حفاظت و افزایش طول عمر مواد غذایی هدف اصلی صنعت بستهبندی این محصولات بود اما هم اکنون سهولت در کاربرد و آسانی مصرف هم به همان اندازه اهمیت یافته است. در این عرصه اهمیت عوامل دیگری همچون امکان ردیابی، تجهیز به نشانگرهای الکترونیکی و با دوام بودن نیز رو به افزایش است. بسیاری از پیشرفتهای جدید صنعت بستهبندی مواد غذایی پاسخگوی این نیازها است. بستهبندی هوشمند و فعال مواد غذایی علاوه بر به تأخیر انداختن عوامل محیطی مؤثر بر مواد غذایی، روشی پویاتر را برای حفظ نگهداری محصول به کار میگیرد. به عنوان مثال دو مقوله مهم در حفظ کیفیت ماده غذایی بستهبندی شده، کنترل میزان رطوبت و اکسیژن است. وجود اکسیژن در ظرف حاوی ماده غذایی موجب رشد میکروبهای هوازی و کپکهای قارچی میشود. به علاوه فعالیتهای اکسیدی درون ظرف باعث ایجاد طعم و بوی ناخواسته و تغییر در رنگ و خصوصیات تغذیهای ماده غذایی میشوند. به همین ترتیب وجود رطوبت در ظرف محتوی ماده غذایی ممکن است باعث ایجاد کلوخه در محصولات پودری شکل یا نرم شدن مواد غذایی ترد شود. به علاوه وجود رطوبت به رشد میکروب کمک میکند. از سوی دیگر، خشکی بیش از حد فضای درون ظرف نیز باعث کم آب شدن ماده غذایی میشود. در بستهبندی فعال ظروف، شامل موادی هستند که این معضلات را بر طرف میکند. برخی از مهیجترین پیشرفت‌های حاصل شده در صنعت بستهبندی مواد غذایی مرتبط با فناوری نانو است. فناوری نانو که علم مطالعه نانو ذرههاست، تأثیر بزرگی بر مواد مورد استفاده در صنعت بستهبندی مواد غذایی داشته است. با بهره گرفتن از ابداعاتی که در مقیاس نانو صورت می‌گیرد می‌توان به ایدههای جدیدی در خواص فنی و قابلیت ممانعت کنندگی ظروف، ایدههای جدید در تشخیص عوامل بیماریزا و راه‌ کارهای جدید بستهبندی فعال و هوشمند دست یافت. نانوکامپوزیتها در رأس ابداعات فن‌آوری نانو مرتبط با صنعت بستهبندی مواد غذایی قرار دارند. نانوکامپوزیت‌ها مواد هستند که از ترکیب نانوذرهها ساخته می‌شوند. فیلمهای پلاستیکی نانوکامپوزیتی این قابلیت را دارند که از نفوذ اکسیژن، دیاکسید کربن و رطوبت به داخل ظرف جلوگیری کنند. به این ترتیب ظروفی که در ساختار آنها از فیلمهای نانوکامپوزیت استفاده شده است، باعث افزایش ماندگاری ماده غذایی می‌شوند. ظروف نانوکامپوزیت سبک، محکم و مقاوم به حرارت هستند. علاوه بر این تحقیقاتی در زمینه ساخت ظروف با استفاده از مواد نانوکامپوزیت زیست تجزیهپذیر درحال انجام است. با این‌ که استفاده از نانوکامپوزیت‌ها در صنایع بستهبندی مواد غذایی تضمین کننده سطح بالای ممانعت کنندگی ظرف است، نوع دیگری از مواد نانو توانایی بالایی در کنترل رشد میکروب‌ها دارد ]18[.
1-4- اهمیت موضوع
مواد استفاده شده برای بسته بندی که از سوخت های فسیلی تولید شده اند عملاً تجزیه ناپذیر می باشند. به همین دلیل مواد بسته بندی غذاها نیز مانند سایر مواد بسته بندی مشکلات جدی را از لحاظ محیط زیست ایجاد میکنند. در نتیجه مطالعاتی جهت استفاده از بسته بندی های زیست پایه تخریب پذیر انجام گرفته است. حدود 125 میلیون تن سالانه در جهان پلاستیک تولید می شود که حدود 30 میلیون تن آن در بخش بسته بندی مصرف می شود ]59 و 69[. به منظور کاهش ضایعات بسته بندی پلاستیکی زیست تخریب ناپذیر استفاده از پلاستیک های زیست پایه تخریب پذیر مانند نشاسته، سلولز، PLA، ژلاتین و… ضروری می باشد ]9 و 102[.
به طور کلی مصرف کنندگان مواد بسته بندی را تقاضا میکنند که طبیعیتر، از بین رونده تر و دارای پتانسیل تجزیه پذیری زیستی و نیز قابلیت برگشت پذیری داشته باشد. به همین دلیل علاقه به مطالعه و توسعه بیوپلیمرها با منابع تجدید شدنی که قادر به تجزیه توسط فرآیند کود شدن طبیعی می باشند برای کاربرد بسته بندی افزایش یافته است. فیلم و پوشش خوراکی لایه نازکی از مواد خوراکی است که توسط فرآیندهای مناسب صنعت غذا ساخته شده و برای دستیابی به اهدافی از قبیل کنترل انتقال رطوبت، محدود کردن انتقال گازها، به تعویق انداختن مهاجرت روغن و چربی، حمل افزودنی های غذایی مانند عوامل ضدمیکروبی و آنتی کسیدان ها، بهبود کیفیت و افزایش ماندگاری بر روی محصول غذایی قرار می گیرد. زیست تخریب پذیر بودن و خوراکی بودن این ترکیبات سبب شده است که به طور وسیع مورد پژوهش و کاربرد قرار گیرند. از جمله کاربردهای فیلم های خوراکی در ارتباط با مواد غذایی می توان به پوشش دادن آنها بر سطح فرآورده های قنادی، میوه ها و سبزی های تازه، برخی فرآورده های گوشتی، برخی فرآورده های لبنی، شکلات، غلات صبحانه ای، طیور و ماهی، فرآورده های منجمد، فرآورده های خشک شده و نظایر این ها اشاره داشت ] 79[.
افزودن پرکننده های با حداقل اندازه در مقیاس نانو به فیلم های خوراکی و تولید پلیمرهای زیست نانو کامپوزیت می تواند راه حل جدیدی برای این مشکل ارائه نماید. نانو ذرات وقتی به پلیمر اضافه می شوند علاوه بر تقویت خواص پلیمر می توانند دارای فعالیت ضدمیکروبی نیز باشند ]63[. این نسل جدید کامپوزیت ها بهبود چشمگیری در مقایسه با پلیمرهای اولیه نشان میدهند. برخی از نانو مواد می توانند ویژگی های نفوذ پذیری مواد بسته بندی را تغییر داده سبب بهبود ویژگیهای مکانیکی، شیمیایی، حرارتی و میکروبی شوند. نانو سایز کردن ذرات موجب افزایش سطح نانوفیلرها و در نتیجه افزایش سطح داخلی و واکنش میان فیلر و پلیمر و در نتیجه بهبود زیادی در خواص پلیمر می شود. به عنوان مثال نانو ذرات اکسید مس، منیزیم و نقره دارای خاصیت ضد میکروبی هستند. نانو ذرات نقره می توانند بیش از 650 نوع باکتری شناخته شده را از بین ببرند ] 11[. از نانو کامپوزیتهای خاک رس نیز میتوان برای تولید مواد اولیه بطری های ماء الشعیر استفاده کرد. مهمترین خصوصیت این مواد بازدارندگی آنها از خروج گاز دی اکسید کربن از این نوشیدنیهاست. سیلیکات کلسیم نانو ساختار برای بسته بندی مواد غذایی فسادپذیر استفاده شدهاند. نانو ذرات سیلیکات کلسیم دارای ساختار متخلخل و خاصیت جذب رطوبت هستند. یکی از اکسیدهای معدنی ای که در سالهای اخیر بیش از پیش در دنیای نانو به ویژه در پوشش دهی منسوجات و تولید کرمهای ضد آفتاب و بسته بندی مورد استفاده قرار گرفته دی اکسید تیتانیوم است ]27[. این ماده در صنعت رنگ سازی کاربردهای فراوان دارد ولی ذرات کوچک نانو متری آن به دلیل داشتن خواص فوق العاده و منحصر به فرد موارد استفاده زیادی پیدا کرده اند. از این ماده در تصفیه، گندزدایی، رنگ زدایی، بوزدایی،ساخت سرامیک های ویژه، از بین بردن سلول های سرطانی، ساخت فتوکاتالیست ها، کاغذ سازی، تولد لوازم بهداشتی و آرایشی، تهیه پوششهای محافظ در مقابل اشعه ماوراء بنفش و ایجاد درخشندگی استفاده میشود. دی اکسید تیتانیوم در اندازه نانو متری یک فوتوکاتالیست ایده آل است که مهمترین دلیل وجود این خاصیت در این ماده قابلیت جذب اشعه فرابنفش است. فوتونهای فرابنفش بسیار پر انرژی هستند و در بیشتر موارد می توانند به سادگی باعث تخریب اجسام گردند. این پدیده معمولاً از طریق شکست پیوندهای شیمیایی در آنها صورت میگیرد. بنابراین دی اکسید تیتانیوم با جذب اشعه فرابنفش و به واسطه خاصیت فوتوکاتالیستی خود میتواند پوششی ضد باکتری روی سطوح ایجاد کند و هم چنین مانع از عبور اشعه گردد. واکنش فوتوکاتالیستی دی اکسید تیتانیوم برای غیرفعالسازی طیف وسیعی از میکروارگانیسمها استفاده شده است. TiO2 غیر سمی میباشد و توسط اداره کل غذا و دارو امریکا (FDI) برای استفاده در غذای انسان، داروها، مواد در تماس با غذا و مواد آرایشی تأیید شده است. اثرات ضد باکتریایی و ضد قارچی دی اکسید تیتانیوم روی اشرشیا کلای، سالمونلا کلرئاسویس، ویبریو پاراهمولیتیکوس، لیستریا مونو سیتوژنز، سودو موناس آئروژنیوسا، استافیلوکوکوس اورئوس، دیاپورته اکتینیدیا، پنی سیلیوم اکسپنسوم گزارش شده است ] 28، 52، 66 و 67[.
تلفیق نانو ذرات فلزی دی اکسید تیتانیوم در فیلم نشاسته تاپیوکا موجب ایجاد نوعی بسته بندی فعال میگردد. بسته بندی فعال نوعی بسته بندی است که علاوه بر داشتن خواص بازدارندگی اصلی بسته بندی های معمول (مانند خواص بازدارندگی در برابر گازها، بخارآب و تنش های مکانیکی)، با تغییر شرایط بسته بندی، ایمنی، ماندگاری و یا ویژگیهای حسی ماده غذایی را بهبود میبخشد و در عین حال کیفیت ماده غذایی را حفظ میکند.
1-5- اهداف تحقیق
1-5-1- هدف اصلی
هدف اصلی از این تحقیق تهیه فیلمهای نشاسته تاپیوکا غنی شده با نانو ذرات دی اکسید تیتانیوم می باشد. همچنین با توجه به نقصان در جذب عنصر روی مواد غذایی توسط بدن و عوارض ناشی از کمبود آن، این فیلمها میتواند تا حدی در جبران این مشکل مؤثر باشند. زیست تخریب پذیر بودن و شکل پذیری خوب نشاسته تاپیوکا موجب اهمیت کاربرد آن در تهیه فیلمهای خوراکی جهت بسته بندی مواد غذایی و داروها میباشد.
1-5-2- اهداف اختصاصی
بررسی اثر نانو دی اکسید تیتانیوم بر خواص ممانعتی فیلم نشاسته تاپیوکا
بررسی اثر نانو دی اکسید تیتانیوم بر خواص مکانیکی فیلم نشاسته تاپیوکا
بررسی اثر نانو دی اکسید تیتانیوم بر پارامترهای رشد میکروبی اشریشا کلی در فیلم نشاسته تاپیوکا
بررسی اثر نانو دی اکسید تیتانیوم بر خواص فیزیکوشیمیایی فیلم نشاسته تاپیوکا
1-6- پرسشهای تحقیق
آیا دی اکسید تیتانیوم به صورت نانو ذرات میتواند خواص مکانیکی را در فیلمهای نشاسته تاپیوکا را افزایش دهد؟
آیا نانو ذرات دی اکسید تیتانیوم بر خواص ممانعتی فیلمهای نشاسته تاپیوکا تاثیر دارند؟
آیا نانو ذرات دی اکسید تیتانیوم بر خواص فیزیکوشیمیایی فیلمهای نشاسته تاپیوکا تاثیر دارند؟
آیا استفاده از نانو دی اکسید تیتانیوم بر پارامترهای رشد میکروبی اشرشیا کلی فیلمهای خوراکی نشاسته تاپیوکا را تاثیر دارند؟
1-7- محدودیتهای تحقیق
در این پژوهش حداکثر غلظت ترکیب نانو به عنوان یک محدود کننده مطرح میگردد. بیشتر از 5% ترکیب نانو باعث هتروژن نمودن فیلم میشد.
1-8- نمودار تحقیق
شکل 1-1 نمودار تحقیق را برای این پژوهش نشان می دهد.
شکل 1- 1: نمودار فرآیند تحقیق
فصل دوم
مروری بر پژوهشهای پیشین
2-1- معرفی نشاسته و نشاسته تاپیوکا
2-1-1- ترکیب و ساختار نشاسته
نشاسته یک جزء غذایی عمده است و یک کربوهیدرات تجزیه پذیر که از هزاران واحد گلوکز ساخته شده است. نشاسته دربرگیرنده زنجیرههای خطی و شاخهدار مولکولهای گلوکز است که آمیلوز1 و آمیلو پکتین 2نامیده میشوند. آمیلوز که یک حالت خطی نشاسته است مسئول شکل گیری فیلمهای قوی است. پیوندهای فیزیکی در شبکه ماکرو مولکولی نشاسته بیشتر براساس آمیلوز هستند و بر خصوصیات مکانیکی فیلمها تاثیر میگذارند از سوی دیگر، ساختار شاخهدار آمیلو پکتین عموماً باعث ایجاد فیلمهایی میشود که شکننده هستند ] 36[.
نشاسته ترکیبی از دو پلیمر است آمیلوز، یک اتصال خطی (4→ 1 ) از glucan – D – α و آمیلوپکتین، یک مولکول پرشاخه که از شاخه های کوچک (4 → 1 ) glucan – D – α و پیوند α (6 → 1) در اتصالات تشکیل شده است. طول زنجیره آمیلوز حدود 6000 واحد D – گلوکو پیرانوز، با وزن مولکولی بین 600000 – 150000 دالتون است. آمیلو پکتین، بر عکس بسیار پر شاخه است به طور میانگین 26- 17 شاخه، با واحدهای D- گلوکوزیل جداشده از پیوندهای (6 → 1 ) α است. اندازهی مولکولی آمیلو پکتین بزرگتر از آن است که به طور دقیق مشخص شود ولی مطالعات پراکنش نور حدود 106 D – گلوکوزیل در هر مولکول را نشان داد که آمیلو پکتین را یکی از بزرگترین ماکرو مولکولهای موجود در طبیعت میکنند. همهی نشاستهها از این دو ترکیب ساخته شدهاند. نسبت آنها در نمونههای نشاسته معمولا 20 به 80 آمیلوز به آمیلو پکتین است ]6 و 8[.
شکل 2- 1: ساختمان شيميايي نشاسته
نشاسته که به وفور در طبیعت یافت میشود، به دلیل قیمت پائین، قابلیت تجدید شوندگی و بازیافت زیستی، یکی از مواد خام جذاب و مورد علاقه برای استفاده در بسته بندیهای خوراکی محسوب میگردد. علاوه بر این حساسیت زا نبوده و به دلیل دارا بودن ویژگیهای مکانیکی و مقاومت در برابر نفوذ گازها، امکان به کارگیری و استفاده از آن در صنایع غذایی وجود دارد ]1 و 3[.
نشاسته به دلیل ماهیت پلیمری قابلیت فیلم سازی دارد به علاوه، به دلیل قیمت مناسب و در دسترس بودن توجه زیادی به آن میشود یکی از معایب فیلمهای نشاسته، مقاومت پایین آنها به رطوبت است برای حل این مشکل میتوان از چربیها یا پلیمرهای زیست تخریب پذیر مقاوم به رطوبت استفاده کرد، برای بهبود ویژگیهای فیلمهای نشاسته به ویژه خصوصیات کششی آنها میتوان از هیدروکلوئیدها در ترکیب آنها استفاده کرد ]4[.
2-1-2- نشاسته تاپیوکا
کاساوا مانیهوت اسکولنتا Manihot esculenta، یوکا یا مانیوت هم نامیده میشود گیاهی است چوبی از تیره فرفیون (خانواده فرفیون) بومی آمریکای جنوبی است که به طور گسترده به عنوان یک محصول هر ساله در مناطق گرمسیری و نیمه گرمسیری برای  ریشه غده ای نشاسته ای آن کشت شده است که عمده ترین منبع کربوهیدرات هستند. آرد تولید شده از ریشه تاپیوکا نامیده میشود. کاساوا سومین منبع بزرگ کربوهیدرتها برای غذای انسان در جهان است. و محصولی کم هزینه برای جمعیت ساکن در مناطق مرطوب استوایی میباشد. شواهد مستقیم نشان می دهد که 1400 سال پیش کشت  کاساوا در السالوادور صورت گرفته است. نشاسته تاپیوکا نشات گرفته از منبع متفاوتی نسبت به نشاستههای رایج مانند غلات (برنج، ذرت)، غده ای (سیب زمینی )، ریشهای (تاپیوکا ) و (نخود و لوبیا) است نام مگذاری این گیاه تا حدی زیادی بستگی به منطقه ای که در آن رشد میکند دارد مانند ( آمریکای مرکزی (yucca anioca M یاMadioca در برزیل و Tapioca در هند و مالزی و در آفریقا و آسیای جنوبی Cassada یا Cassava) ]68 و 71[.
شکل 2- 2: ریشه کاساوا
جدول 2- 1: گیاه شناسی گیاه کاساوا
طبقه بندی علمیردهدولپه ایهاراستهمالپیگیالسخانوادهتیره فرفیونزیرخانوادهکروتنوییدهنژادمانیهوتهگونهاسکولنتانام علمیمانیهوت اسکولنتاکرانتز2-1-2-1- مرفولوژی گیاه کاساوا
بوته کاساوا چوبی و چند ساله است که تا ارتفاع 2 تا 4 متر رشد می کند برگ ها به صورت توده ای در تاج درخت شبیه به برگ نخل گسترده و روی دمبرگ بلند و باریکی شامل 5 تا 9 پهنه به وجود می آیند آن ها فقط به سوی انتهای شاخه رشد می کنند. وقتی گیاه درحال رشد است.ساقه اصلی به سه شاخه تقسیم شده وبعد به همین ترتیب شاخه ها ی دیگری بر روی آن ها تشکیل می شود ریشه یا غده ها نیز در زیرسطح زمین توسعه می یابند. گل نر و ماده به صورت مجزا مرتب شده و به روی همان بوته تشکیل می شوند. شکل میوه سه گوش و حاوی سه دانه است که قابل دوام بوده و برای انتشار گیاه مورد استفاده قرار می گیرد. تعداد ریشه ها ی غده ای و ابعاد آن ها و تا حد زیاد ی در میان گونه های مختلف متفاوت است. ریشه ی کاساوا مخروطی وطویل است و با گوشت سفت همگن در پوسته ای قابل تفکیک که حدود یک میلی متر ضخامت دارد و با رنگ قهوه ای و درقسمت خارجی زبر می باشد گوشت غده می تواند سفید گچی یا زرد باشد. ممکن است اندازه ی طول ریشه از 30 تا 120 سانتی متر و قطر آن 4 تا 15 سانتی متر و وزن 1 تا 8 کیلوگرم یا بیشتر برسد. ترکیب شیمیایی ریشه های کاساوا متفاوت است مطالعهی 30گونه در مکزیک نتایجی به شرح ذیل در بر داشته است ریشه های آن بسیار غنی از نشاسته است و حاوی مقادیر قابل توجهی از کلسیم،فسفر و ویتامین ‏c‏ می باشد.ولی فقیر از پروتئین است. دربرگ این نوع گیاهان،منبع خوبی از پروتئین لیزین،اما کمبود اسید امینه احتمالا متیونین و تریپتوفان است ]22[.
جدول 2- 2: آنالیز ریشه کاساوا و سیب زمینی ] 68[.
درصدکاساواسیب زمینیرطوبت7/2575/80مواد نشاستهای21/4519/90قندها5/130/40پروتئین1/122/80چربیها0/410/20فیبر1/111/10خاکستر0/540/92
2-1-2-2- فرآوری و تبدیل کاساوا
عمر مفید کاساوا چند روز است و خواص ویژه خود را از دست می دهد اگر برگ های کاساوا دو هفته قبل از برداشت حذف شوند عمر مفید آن دو هفته طولانی تر می شود.قرار دادن ریشه در پارافین یا موم یا ذخیره کردن آن در کیسه پلاستیکی خطرات آن را کاهش داده و عمر مفید آن را به 3 تا 4 هفته افزایش می دهد ریشه پوست گیری شده را می توان منجمد کرد.روش سنتی عبارتست از بسته بتدی ریشه در مالچ مرطوب برای تمدید عمر مفید آن می باشد .ریشه های خشک را می توان کوبید و به آرد تبدیل کرد در خلال فرآیند کوبیدن ریشه،ذرت را می توان اضافه کرد تا پروتئین آرد افزوده شود. آرد کاساوا دارای ظرفیت نگهداری آب زیادی میباشد و از آن در تهیه پخت نان،کیک،کراکر و پودینگ استفاده میشود. بعضا آرد کاساوا با مشتقات جزیی ممکن است به عنوان جانشین آرد گندم در تهیه نان استفاده شود. نانی که بطور کامل از آرد کاساوا تهیه شده در امریکا به بازار عرضه شده و نیاز افراد دارای آلرژی به آرد گندم را برآورده کرده است. ریشه های تازه را میتوان به صورت قطعه های نازک کاملا سرخ کرده و محصولی مشابه چیپس سیب زمینی تهیه کرد.ریشه ها را میتوان پوست گیری رنده کرده و با آب شستشو داده و نشاسته را استخراج نمود و همچنین پروتئین برگ را میتوان به خوراک دام اضافه کرد. در افریقا فرآوری ریشه به چند روش مختلف صورت میگیرد. آن ها ممکن است برای اولین بار در آب تخمیر شده سپس آن ها را بوسیله آفتاب خشک کرده برای ذخیره سازی یا رنده نمودن آن سپس خمیر تهیه می نمایند و می پزند. نوشیدنی های الکلی را نیز میتوان از ریشه کاساوا تهیه نمود. برگهای جوان حساس می تواند به عنوان سبزیهای معطر خوراکی مورد استفاده قرار گیرد که حاوی سطوح بالایی از پروتئین می باشد. استفاده های صنعتی از کاساوا و فرآیند تبدیل آن در کارخانجات و تولید محصولاتی شامل کاغذسازی، پارچه،چسب، شربت فروکتوز، سوخت زیستی، خوراک دام وکیسه های زیست تخریب پذیر میباشد ]22 و 68[.

2-2- نانو تکنولوژی
علم نانو و علوم مرتبط با آن جدید نیستند چرا که صدها سال است شیمیدانان از تکنيک‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌های علم نانو در کار خود استفاده می‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌‌کنند. از پنجره های رنگارنگ کلیساهای قرون وسطی گرفته تا شمشیرهای یافت شده در حفاری های سرزمین های مسلمان همگی گویای این مطلب هستند که بشر مدت هاست که از برخی شگردهای این فناوری در بهینه کردن فرایندها و ساخت باکیفیت تر اشیاء بهره می برده است اما تنها به دلیل پیشرفت کم فناوری و نبود امکانات امروزی نتوانسته حوزه مشخصی برای این فناوری تعیین کند. اولین بار ریچارد فیمن در سال 1959 طی سخنرانی خود با بیان امکان به راه اندازی فرآیندی برای دستکاری اتمها و مولکولها با استفاده از ابزارهای دقیق سبب شده تا افکار به سمت توسعه چنین امکانی متمایل شوند. در سال 1974، پروفسور نوریو تانیگوشی، مدرس دانشگاه علوم توکیو، نخستین بار واژه “فناوری نانو” را بکار گرفت. او در مقاله ای با نام “مفهوم اساسی فناوری نانو” اشاره می کند که فناوری نانو اساسا مجموعه ای از فرایندهای تفکیک، ادغام و تشکیل مواد در حد یک اتم یا یک مولکول است. در دهه 1980 این تعریف به طور وسیع تر توسط دکتر درکسلر (نویسنده کتاب های موتور خلقت) مورد بررسی قرار گرفت. فناوری نانو و نانوعلوم در اوایل دهه 1980 با تولد علم کلاستر آغاز به کار کرد. این توسعه سبب کشف فلورین در سال 1986 و نانولوله های کربنی در مدت چند سال بعد شد. مقیاس نانو، ابعادی کمتر ازnm 100 (معمولا nm 1/0 تا nm 100) را شامل می شود، که شامل موادی یا سطوح خارجی بسیار زیاد و ناهمگونی کم که پدیدههای کوانتومی بروز میدهند میباشد. علم نانو، مطالعه پدیدهها و خواص نوین مواد، در این مقیاس (در حد اتم ها و مولکولها ) میباشد. فناوری نانو، کاربرد دانش ، مهندسی و فناوری در مقیاس نانو در جهت تولید مواد و سیستمهایی است که وظایف خاص الکتریکی، مکانیکی، بیولوژیکی، شیمیایی یا محاسباتی را انجام میدهند. نانو تکنولوژی بر اساس ارائه خواص و عملکردهای نوینی از نانو ساختارها، دستگاه ها و سیستم ها به علت ساختار بسیار کوچک آنهاست. این دستگاه ها عموما کاربردهای بیولوژیکی و پزشکی دارند به طور کلی نانوتکنولوژي، فن آوري تغيير در خواص مولکولهاي تشکيل دهنده مواد است. و به همين دليل مقياس نانو بهترين تعريف براي تکنولوژي ميباشد ]88[.
2-3- بایو نانو تکنولوژی
نانو بایو تکنولوژی حوزه نوظهور علمی و فنی است که گرایش چند رشته ای از علوم (شیمی ، زیست شناسی، فیزیک، علم مواد) است. این حوزه از یک سو، به فعالیتهای همگام علم مواد و بیولوژی اشاره دارد و از سوی دیگر حد فاصل علم فیزیک و بیولوژی است. نانو بایوتکنولوژی با سیستمهایی در مقیاس نانو که با راهکار بالا به پائین ساخته شدهاند(خرد کردن واحدهای بزرگتر به اجزای کوچکتر ) یا از روش پائین به بالا برای سامان دادن اجزا بهره میبرند، سر کار دارند. نانو بایو تکنولوژی بیش از آنکه شاخه ای از بایوتکنولوژی باشد شاخه ای از نانو تکنولوژی است. بایوتکنولوژی از سازوارههای زنده در کاربردهای صنعتی مختلف است، ولی نانو بایوتکنولوژی استفاده از قابلیتهای نانوتکنولوژی در کاربردهای زیستی است. بنابراین واژه نانو بایوتکنولوژی نیز مانند واژههایی چون بیومکانیک و بیومتریال به استفاده از تکنولوژیهای مختلف، در کاربردهای زیستی اشاره دارد و نه به استفاده از قابلیتهای ارگانیزمهای حیاتی در کاربردهای مختلف صنعتی. نانو کامپوزیتها جایگزین خوبی برای بطریهای پلاستیکی نوشیدنیها هستند استفاده از پلاستیک برای ساخت بطری باعث فساد و تغییر طعم نوشیدنی میشوند، نانوکامپوزیتها میتوانند به عنوان مواد بسته بندی جدید استفاده شوند، یک مثال نانوکامپوزیتهای تشکیل شده از نشاسته سیب زمینی و کلسیم کربنات است، این فوم مقاومت خوبی به حرارت دارد، سبک و زیست تخریب پذیر است و میتواند برای بسته بندی مواد غذایی به کار رود. افزودن 5-3% از نانو خاک رس به ماده پلاستیک آن را سبک تر، قویتر و مقاومتر به حرارت می کند و خواص ممانعت کنندگی بهتر در برابر اکسیژن، دی اکسید کربن، رطوبت و مواد فرار دارد ]81[.
2-4- کامپوزیت
رشد فزاینده تکنولوژی در سال‌های اخیر باعث شد تا موادی که در دسترس بشر بود برای جامه حقیقت پوشاندن بر رویاهای مدرن کافی نباشد و از این رو تلاش برای رسیدن به مواد جدید آغاز شد. امروزه در بیشتر کاربردهای مهندسی، اغلب به تلفیق خواص مواد نیاز داریم. موادی که ضمن داشتن استحکام بالا، سبک باشند، مقاومت سایشی وجذب UV^1خوبی داشته باشند که از جمله آن انواع کامپوزیت ها را می توان نام برد.
کامپوزیتها، ترکیبات ساخته شده از پلیمر و پر کننده آلی یا غیر آلی هستند. استفاده از پر کنندهای غیرآلی در ماتریکس پلیمر، استحکام و سفتی پلیمر را افزایش میدهد و تولید آنها به صورت بالقوه میتواند باعث بهبود ویژگیهای مکانیکی مواد بسته بندی و ظروف نشاستهای گردد.
کامپوزیت‌ها از دیدگاه زیستی به دو دسته کامپوزیت‌های طبیعی. مانند استخوان، ماهیچه، چوب و …
و کامپوزیت‌های مصنوعی(مهندسی) تقسیم میشود.
کامپوزیت‌های سبز(کامپوزیت‌های زیست‌تجزیه‌پذیر)
در اینگونه کامپوزیت‌ها، فاز زمینه و تقویت کننده، از موادی که در طبیعت تجزیه می‌شوند، ساخته می‌شوند. در کامپوزیت‌های سبز، معمولاً فاز زمینه از پلیمرهای سنتزی قابل جذب بیولوژیکی و تقویت کننده‌ها از فیبرهای گیاهی ساخته می‌شوند ] 88[.
2-5- تعریف نانو کامپوزیت
فناوری نانو به دلیل تعامل نزدیکی که با سایر رشتههای علوم دارد به سرعت در حال گسترش است و در این علم پلیمر را نیز از مزایای خود بی بهره نگذاشته است. استفاده از فناوری نانو در زمینهی علم پلیمر به تولید پلیمرهای نانوکامپوزیت منجر شده است. نانوکامپوزیتها پلیمرهایی هستند که در آنها از ترکیبات آلی یا غیرآلی مختلفی که دارای اشکال مختلف صفحه ای، کروی و یا به صورت ذرات ریز بوده و اندازه ای در حد ابعاد نانو دارند به عنوان فیلر یا پرکننده استفاده میشود. فیلمهای حاصل از ترکیب نانو مواد و بیوپلیمرها و یا به اصطلاح نانو کامپوزیتهای بیوپلیمری خواص کاربردی مطلوبتری از خود نشان میدهند که مهمترین آنها افزایش مقاومت مکانیکی و کاهش نفوذپذیری نسبت به بخار آب میباشد. افزایش بازدارندگی در برابر نفوذ گازها، افزایش کارایی فیلم در استفاده به عنوان بسته بندی فعال، افزایش مقاومت حرارتی ماده بسته بندی و ایجاد شفافیت و بهبود خواص ظاهری فیلم از دیگر مزایای نانوکامپوزیتهای بیوپلیمری است ]6[.
2-6- تعریف بایو نانو کامپوزیت
در طول چند سال اخیر “بایونانوکامپوزیت” تبدیل به یک اصطلاح رایج برای تعیین نانوکامپوزیت ها که شامل پلیمرهای طبیعی در ترکیب با مواد معدنی هستند و نشان دهنده حداقل یک بعد در مقیاس نانومتر است ] 31 و 61[. که ویژگی های آنها در مقایسه با نانوکامپوزیت های مشتق شده از پلیمرهای سنتزی بسیار مطلوب تر است. علاوه بر این بایونانوکامپوزیت ها مزیت قابل توجه ای از زیست سازگاری، زیست تخریب پذیری و بهبود ویژگی های عملکردی به وسیله ارائه بایولوژی یا بخش معدنی نشان دادند. موجودات زنده تولید کننده نانوکامپوزیت های طبیعی هستند که آرایش ترکیبی از ترکیبات آلی و معدنی در مقیاس نانو نشان میدهد ]32[.
در واقع بایونانوکامپوزیت ها نسل جدیدی از نانوکامپوزیتها هستند که شامل ترکیبی از بیوپلیمرها و مواد معدنی هستند که حداقل یکی از ابعاد آنها در مقیاس نانومتری باشد ] 63[. علاوه بر این، مواد بیوپلیمر به عنوان



قیمت: تومان

دسته بندی : پایان نامه

پاسخ دهید